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AN EQUIVALENCE BETWEEN iWO ALGORITHMS

FOR QUADRATIC PROGRAMMING

Jong-Shi Pang

ABSTRACT: In this paper , we demonstrate that the ‘Van de panue-Whinston

sy~ netric simplex method when applied to a certain implicit forniulation

of a quadratic program generates the same sequence of primal feas ible

vectors as does the Von Hohenbalken simplicial decomposition algorithm

spec ialized to the same program. Such an equivalence of the two

algorithms extends earlier results for a least-distance program due to

Cottle-Djang.

Key Words. Equivalence of algorithms, quadratic progranmiing, column

generation, siinplictal decomposition. for P
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1. INTRODUCTION. There has been an excessive number of algorithms

for solving a convex quadratic program which are based on the Kuhn-Tucker

optimality formulation of the program and employ simplex pivots. An

undesirable feature of such a pivoting algorithm is that typically, the

Kuhn-Tucker formulation contains more variables (multipliers of the

constraints) than the program itself.

In two recent papers (Refs. 1 and 2), Von Hohenbalken has described

a simplicial decomposition algorithm for solving a nonlinear minimization

program with a pseudoconvex objective function and with a convex compact

feasible set. The algorithm requires no dual variables and therefore

eliminates the undesirable feature of having to operate on a formulation

with extra variables. Another advantage of the algorithm when applied to

linearly cons trainted problems (such as quadratic programs) is that the

powerful simplex method of linear prograamiing can be employed to solve the

subprograms.

This paper is concerned with the study of two algorithms for convex

quadratic progr~~~thg. One is the Von Hohenbalken algorithm and the other

is the symnetric simplex method due to Van de Panne-Whinston (Ref. 3). It

is shown that the former algorithm specialized to a convex quadratic program

with bounded feasible set generates the same sequence of primal feasible

vectors as does the latter applied to a certain implicit formulation of the

given program. This result has two implications. First, the specialized

Von Hohenbalken algorithm can thus be viewed as a pivoting algorithm. Second ,

the Van de Panne-Whine ’ .~n algorithm may be implemented as a decomposition

L ii:i: II r:iiiiiiii i
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we mention that Von Hohenbalken~s algorithm has been applied quite

successfully for solving some fairly large quadratic programs arising

from portfolio selection (Ref. 4).

It is important to point out that Van de Panne -Whins ton algorithm

when applied to the standard formulation of a quadratic program

minimize c
Tx +~~x~cx subject to xEX [XER ~ : x >0 , Ax b, Dx <d l (1)

may not produce the same sequence of primal feasible vectors as does

Von Hohenbalken algorithm. An example (due to A. Dj ang ) given in the

Appendix will illustrate this fact.

Obviously, by using the representation of the feasible se t X in

terms of its extreme points and rays , the quadratic program (1) is

equivalent to the one below

minimize (P11 + Q~)T 
+ ~ (P1~ + Q~) TC (P’fl + Q~

) (2)

subj ect to eT
11 a 1 ; ~ and T( ~ 0

Here P and Q are the matrices of extreme points and rays of the set K

respectively; and e is the vector of ones. Due to the fact that p and Q

are known only implicitly, we shall call (2) the implicit formulation

of the quadratic program (1). It is our contention that when van de Panne-

Whinaton algorithm is applied to (2) with a vacuous Q, (i.e., with the

feasible set of the original program (1) being bounded) it produces exactly

the same sequence of primal feasible vectors as Von Hohenbalken algorithm

is applied to (1). A noteworthy point here is that in order for the

former algorithm to be applicable to (2), it is necessary to be able to 

. — -
~~~~~~~

— - 



implement the algorithm without the full knowledge of the matrices of

generators . The tool emp loyed to achieve this is the column generation

technique described in (Ref. 5). Incidentally the algorithm described

in the reference provides an alternative method for solving the quadratic

program (1) without the use of multipliers. In the case where the

matrix P is explicitly given, the matrix Q is vacuous, the matrix C is

an identity and the vector c is zero , the quadratic program (2) reduces

to the least-distance program studied in (Ref. 6) where the equivalence of

the Van de Panne-Whins ton and Von Hohenbalken algorithms has been

established.

The idea of using the implicit formulation (2) to solve the

quadratic program (1) has previous ly appeared in an unpublished paper

by Sache r (Ref . 7) who proposed a decomposition algorithm tha t involves

solving quadratic subprograms by Lemke ’s me thod. As we shall see both

Van de Paune -Whinston and Von Hohenbalken algorithms require solving

systems of linear equations and linear subprograms only.

The rest of the paper is organized as follows. In the next section,

we describe a revised version of the Van de Panne-Whinston algorithm

applied to solve a quadratic program of the form

minimize qTx + ~XTGx subject to x 0 and Ax = b . (3)

This version operates directly on the equality constraints without

converting them into inequalities . In Section 3, we apply this revised

algorithm to (2) and describe the colmtn generation technique to show how

the algorithm can actually be implemented without the explicit knowledge

of the matrices P and Q. In Section 4, we establish a necessary and
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- - sufficient condition for an exchange pivot to occur in the application

of the revised Van de Panne-Whinston algorithm to solve the implicit

formulation (2) of the quadratic program . A consequence of this result

is that the finite termination of the algorithm can be established

without the assumpt ion of nondegeneracy. Such conclusions extend those

established by Cottle and Djang (Ref. 6) for the least-distance program.

Finally , in the fifth and last section, we establish the above-mentioned

equivalence between Van de Panne -Whinston and Von Boheabalken algori thms .

2. NE SYMMETRIC SIMPLEX METHOD OF VAN DE PANNE - WHINSTON . We first

su~~arize the operations of the Van de Panne-Whinston syninetric Simplex

method for solving a general convex quadratic program (Ref. 3). To start,

obtain a primal feasible vector by means of a Phase I simplex method. With

this vector, set up the initial standard tableau of the Kuhn-Tucker

conditions so that no pair of corresponding primal and dual variables is

simultaneously basic. Choose as a driving variable the primal nonbasic

variable whose corresponding dual complement is most negative. If no

such variable can be identified, stop; the current primal feasible vector

is optimal. Otherwise, increase the driving variable until it is blocked

by either its dual complement becoming nonnegative or by some other basic

primal variable becoming noupositive. If there is no blocking variable,

stop; the given program has an unbounded objective value. If the blocking

variable is the dual complement , perform a principal pivot making the

driving primal variable basic and the corresponding blocking dual

complement nonbasic (IN-PIVOT). This completes a major cycl, and the

algorithm attempts to find a new driving variable. If the blocking

- -~~~~~~ .
-
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variable is some other basic primal variable, then either a simple

principal p ivot or a double pivot is performed , depending on whether

the former is possible . If the principal pivot is in fact possible,

then a minor cycle is entered with the current driving variable unchanged

(OUT-PIVOT) . Such a minor cycle must terminate in a finite number of

iterations with the driving variable becoming basic and its dual complement

nonbasic . At that point , a new major cycle starts. Finally, if a double

pivot is performed , then the curren t major cycle is completed and a new one

begins (EXCHANGE-PIVOT) .

Referring to the quadratic program (3) , we say tha t an index set ~

is basic feasible if (i) the associated basis matrix

B(s) (A.~ )T

0

where G~~ is the principal submatrix of G indexed by ~ and A.~ consists

of the columns of A indexed by ~~, is nonsingular; and (ii) the vector

(x * \ U ( ) 1 q~

b

*satisfies x > 0.
*

* 
x 

*If ~ is a basic feasible index set, the vectors x ~ and X
0

satisfy the Kuhn-Tucker conditions of the program (3) 

~-. -~-.~--- - . - 
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x > O

0 — b - A x  , u~x..O

except possibly for the noimegativity of the vector u~ — q + Gx* + AIl*

Note that u — 0. The standard system corresponding to the (basic feasible) 
I 

-

index set
~~~

is

- B(~Y
1

[(:
) 

+ 

( G :) 
x~ - ( U ) ]  

(4)

u~ - (G (A.~)T)fl(a)

(

~~~
)]+(G

~ (A.~)
T)B(~~~~l

(u )

+ 
1G~~~

- (G~~~(A.~)
T) B(~)

1

( 

G~~~

L

where ~ is the complement of 
~~~
. r -

In what follows , we state a revised version of Van de Panne-Whinston

algorithm applied to the quadratic program (3). This version operates with

basic feasible index sets and keeps track of the useful ingredients only.

In particular, it does not require the full knowledge of the system (4) and

can thus be considered as an analog of the revised simplex method of linear

prograeming.

Let ~ be a given basic feasible index set. Solve the system of linear

______ ~~~~ . - -
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equations for x and )~,

B(~) (x ~ — _  q (5)

1 * b

-
~ 

and compute

q

~ 

+ Ga x* + (A.~)
T 
1* (6)

The vector gives the values of the currently basic dual variables.

Determine an index t E ~ so that

mm . (7)
iE~

If > 0, stop ; the program (3) is solved . Otherwise , solve the system

of linear equations for f and h

B(~) 
~~ 

- j G
t (8)

h i

and compute

+ Gt~ f~ + (A.~)Th

Note that G~~ gives the diagonal entry corresponding to the pair of driving

variable x~ and its complement u~. If — 0 and f > 0, stop ; the

program (3) is unbounded below. Otherwise, de termine

iL~
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- mm ~ - x / f~ : f~ < 0 , j E~ J (9)

— 
~~~~~~~~~ 

/ ~~ > 0

I ~
If ~2 < 9

1
, add the index t to the set ~ and return to solve a new system

of linear equations (5). This corresponds to an IN-PIVOT. if ~
2 > 9 1

let s be a minimizing index in (9). Solve the system of linear equations

for e and h

B(s) 
( 

eS (10)

~~0

where e is a unit vector wi th a one in component s. If > 0 , drop the

index $ from the set ~ and return to solve a new sys tem (5) . Skip the

com~.arison (7) and proceed directly to (8) af ter  the solution of (5) with

the same index t. This corresponds to an OUT-PIVOT. Finally , if f5= 0,

replace ~ by ~ \ ~ s 3 U ~ t )  and return to (5) . This corresponds to an

EXCHA*E-PIVOT. Note that is the diagonal entry corresponding to the

pair of blocking variable x3 and its complement u~

In practice , the system of linear equations (5, 8, 10) should best be

solved adaptively by a factorization scheme which takes advantage of the

change of the basis matrix B(~) (such as those described in (Ref. 8)).

We close this section by repeating an important fact. Namely ,

throughout the algorithm, each index set ~ is basic feasible .

_ _ _ _  —,-.~~~~~~~~-~~~~~~~- -~~ 
,~~- . --- --~~~~~~ 

-- . 1
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3. NE IMPLICIT FORMULATION AND NE COLU~~ GENERATION TECHNIQUE. In this

section , we specialize the revised Van de Panne-Whins ton algorithm to the

implicit formulation (2) of the quadratic program ( 1) .  In this specialization,

each basic feasible index set ~ is the disjoint union of two index sets

and 
~2 consisting of the indices of the basic ‘~~

- and ~-variables

respectively . The associated basis matrix is then

B(~1 ‘ 
~~ 

= (p )
T CP (P ) T CQ~

:Q:;)T C (Q
~2
) cQ 

: )
Throughout the algorithm, cv~ is always nonemp ty whereas 

~2 may be empty.

Initially , cr.~ is a singleton and ~2 
empty . Each index in 

~~~~~~ 
corresponds

to an extreme point (ray) of the feasible set X. The corresponding

feasible vector is given by x = P + Q ~ where P~ (Q~ ) consists of
1 ~2~~ 2 1 2

the col~~~is of the matrix P(Q) indexed by ~~ ~~~ 
respectively) . These

colimuis P and Q are to be stored after they are generated. As pointed

out in (Ref. 5), there is a reasonable limit on the number of such columns

required in each iteration of the algorithm.

With the index sets and 
~2 and columns P and Q given, the

- 
~1

system (5) may be written as

_ _ _ _ _ _ _ _ _ _ _
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,~ 

- ( 2 )T~ ( 1 1)

( ::~ 
) ( ~~2

) Tc )
The scalar is the multiplier of the convexity constraint in (2). After

the solution of the system of linear equations (11) ,  one needs to determine

the index t. From (6) , we have

= (p )T c + ~~~
1
)T C(P Q~2

) ~ + p~ e~~ \

~~
2
)T (Q~~)T 

0)

(p ) T (c + Cx*) + e

(Qe )T 0

/
where and are the complements of and c~~ respectively and

— P~
1 

.i.i:
~ 

+ 

~~2 ~~2 
(12)

By (11) , it follows that

ai
) T (c + Cx*) + * e 0 .

~~~2
)
T o

I

I 

- - 
j 

~~ . ~- ~~ ~~~~~~~~~~~~~~~~ 
.—~~~~~~~~. —- ~~~~~~~~~~ - ~~~ ‘-,
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Therefore > 0 if and only if

T * *x (c + Cx ) + p > 0 for all x EX

Hence to determine the desired index t, one may solve the linear program

minimize L(x*) xT(c + Cx*) subject to xEX . (13)

Either this program has a finite optimum L(x*) or it is unbounded below.

In the second case, an extreme ray 
~~ 

with ~ 
~~2 

is obtained. In the

first case, if i~(x*) + ~ 0, then the program (2) (and thus (1)) is

solved. Otherwise an extreme vector with t~~~~1 
is obtained. In

either case, if the program (2) is not solved yet, an index t and a

corresponding vector P~ or are obtained such that = mm (j .) is
iE~ 

1

* * - *negative. Note that = L(x ) + p where L(x ) denotes the final

objective value of the linear program (13). With the index t determined,

the rest of the major cycle can be completed without difficulty.

To s~msnarize , we present below a detailed description of the revised

Van de Panne-Whinston algorithm specialized to the implicit formulation

(2) of the quadratic program (1).

Step 0 (Initialization) Solve the linear program

minimize 0T~ subject to xEX .

If this program is infeasible, stop ; so is the quadratic program (1).

Otherwise let P
1 
be an extreme point feasible vector. Set ~ 1 3

and 
~2 

— . (See Remark 1.)
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Step 1 (Major Cycle) Solve the system of linear equations ( 11) for

* * * *
~~ , and p . Define the vector x by (12) and solve the linear

1 2

program (13). (See Remark 2.)

Step 2 (Termination Test) Does the final objective value j(x*) of the

linear program (13) satisfy L(x ) + p > 0? If yes , stop; the current

is a desired optimum solution to the quadratic program (1). Otherwise,

continue. ¶

Step 3 (Minor Cycle) Let P~ (or be the extreme point (ray) solution

obtained at the termination of the linear program (13). Solve the system of

linear equations for f , g and h:
1 2

B(~1, 
~~ ~ 

- (~~~) T CP~ or - ( p ) T 
CQ~ 

(14)

(
2
)
T
~~~t 

~2 
cQt

and compute the diagonal entry

— (P )T CP + (p )T c(P f + Q g ) + h (15a)

or

(Q )
T 

CQ~ + (Qt) T C(P~ f~ + Q~ g~~) + h (15b)

. 
--
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£
Step 4 (Test for Unboundedness) If — 0 and ( ~1 > 0 , stop; the

quadratic program (1) is unbounded below. Otherwise continue.

Step 5 (Ratio Test) Determine the minimum ratios

— mm C - I f~ : f~ < 0  , i E~~1 3

8~~am i n C _ ~~~~/ g ~ : g
~~

< O , iE~ 2) H

and let

9
1 

— mm , e~ 3

= ~~~~ _ (~~(x~) + p *) ~ if > 0

otherwise

Step 6 (In-Pivot) If e2 
< , replace 

~~ 
(or 

~~ 
by 

~~ 
U C t  ~ ~~ 

U f t  )~~
depending on whether P~ or is obtained at Step 3. Go to Step 1. If

2 1e > ~ , continue.

Step 7 (Check Pivot) Let s be a minimizing index in 9~. Solve the system of

linear equations for f , g and ii:

~1 ~2

B(~ 1 ‘ 
~~ 

— e or 0

—

2 
0 e~

1; 0 0
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depending on whether s E~~1 
or a E~ 2

. Here e
8 and e8 are unit vectors

with a one in component s.

Step 8 (Exchange Pivot) If sE~~1 (a
2) and ( )  — 0 , replace rj

1 (~ 2)

by 
~~~~~ 

‘
~ C s )  U f t )  and go to Step 1. Otherwise continue. - .

Step 9 (Out-Pivot) Replace ~,(or~ 2) by 
~~~~~ 

\ Cs). Solve the system

of linear equations (11). Retain the same vector P
t 

or Q~ and go to Step 3.

Remarks 1. This is just one way of getting an initial extreme point

feasible vector.

2. If is a singleton and is empty (as in the initialization

step), then the unique solution to the system (11) is trivial to obtain.

* *In particular, ¶~ must be equal to 1 and thus x — p • A similar

remark holds for the systems in Steps 3 and 7.

By using (14), it is easy to see that the expressions (iSa) and

(15b) can be simplified as:

— (P~ + 
~~a~~1 

+ 
2~~2~ 

C + P~~f~ + %s~) (16a)

a + p~~f + %g~~
) C + P~~f + %g )  . (16b)

We close this section by pointing out two more remarks. First, if

the feasible set X is bounded, then Step 4 of the algorithm will never happen.

It can therefore be skipped. Second, if the program (1) is strictly convex or

equivalently, if the matrix C is positive definite, then by (16) and the

— ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~ .
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definition of the index t, it can be easily shown that the entry

is always positive. Two consequences of this result are: (i) again,

Step 4 will never happen; and (ii) the algorithm will always compute

an optimum solution of the program (1).

4. THE EXCHA1~R~E PIVOTS. In (Ref. 6) it is shown that for the least-

distance program, the exchange pivot (Step 8) is never performed because

the pivot entry (f
5) is always positive. A consequence of this result is

that the finite termination of the algorithm can be established without

the assumption of nondegeneracy, i.e., the assumption that the basic

primal variables are positive in each tableau. In this section, we extend

these results.

Theorem 3.1. Consider the application of the revised Van de Panne-

Whinston algorithm to the implicit formulation (2) of the convex quadratic

program (1) as discussed in Section 3. Then an exchange pivot is performed

if and only if an in-pivot is not performed and the current index set

is the singleton f s 3

To prove this leusna , we first establish

Le
~~

a 3.2. Let C be syninetric positive semi-definite. If B(~ 1, 
~~

nonsingular, then so is each B(~~, ~~) for any C c

and~~~~1’Ø .

~~~~~~~~~~~ Suppose that for some euch subsets and , B(~~ , ~~) is

________________________ 
_ _ _ _ _ _  -.-— - ~~ -—--—-- . --

~
---
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singular. Then there exist f , , g , and h such that
~1 ~2

~~ 
f~; 

a

- .

h

It is easy to deduce that

(F ,  f, + Q~, g
e
,) C (Fil f~~l

1 

+ 
~ri 

g
e
,) —

By the given assumption on the matrix C , it follows that

C(P , f , + Q ,  g , )  — O
~1 ~1 ~2 

c~2

Thus h — 0. By defining vectors — (f
01~

1) and g~ (g
;

,

2) , ~~~ is

easy to see that

B(
~ l ~~ ~~ 0

S

S

0

Since f and g , cannot both be zero, we obtain a contradiction Q.E.D.

Proof of Theorem 3.T. It suffices to show that if an in-pivot is not

performed , then

— —~~——- * t - r~; ..  _a— —  S- .— - - - - -  -



~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ——-—- ~~~—- -- ----- — -- 
- -

17

(i) s E~ 2 implies j
3 > 0 ; and

(ii) s E~ 1 implies 
~ 
> 0 unless the current index set is the

singleton fs 3.
In fac t, both of these assertions follow easily from the previous

lenina . Q.E.D.

Theorem 3.1 implies that it is not necessary to execute Step 7 in

the algorithm to determine if an exchange pivot is performed. In words

an exchange pivot corresponds to an exchange of the extreme point P5

with another one P~. The reason that such a pivot is never performed

in the least-distance program is due to the choice of the initial extreme

vector as one minimizing the given objective function. Such a choice is

clearly impossible in the present situation because one does not know

all the extreme points in advance. An exchange pivot can thus be thought

of as a search for such an extreme point.

Corollary 3.3. No nondegeneracy assumption is needed for the finite

termination of the algorithm.

Proof. In fact, as pointed out in (Ref. 6), a degenerate (i.e., zero) basic

primal variable in any tableau may be dropped from the basis by an

out-pivot. So if a tableau contains such variables, after several such

out-pivots, either of two cases will arise : (i) the cardinality of

is 1, or (ii) the cardinality of is greater than 1 and the ratio

test (Step 5) indicates that an in-pivot should be performed. In case (1.) ,

it is easy to see that 1~ — 1 and the tableau is nondegenerate. In

case (ii), the tableau must be nondegenerate in order for the in-pivot

to happen. Q.E.D.

_ 

- - . - - - -.“

________ a-.-—. ~~~~~~~~~~~~~~~ —
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5. THE EQUIVALENCE. As Von Hahenbalken algorithm applies only to

programs with compact feasible sets, we assume throughout the rest of

this paper, that the feasible set X of the program (1) is bounded. In

what follows, we restate the algorithm as described in (Ref. 1). Let

f(x) a crx + bXTCX denote the objective function, and grad denote the gradient.

Step 0 (Initialization) Solve the linear program

minimize ~
T grad f(0) subject to xEX .

If this program is infeasible, stop ; so is the quadratic program (1).

Otherwise , let be an extreme point of X. For t = 0, set

t+1 A l  t+1 e Al
x — x  and B — t x  j .

Step 1 (Major Cycle) Set x~ — ~~ 3
t — Bt~~ and let St and Mt be the

simplex and the affine manifold generated by B~ . Use linear progranuning

to locate the extreme point that solves

minimize ~
T grad f(xt) subject to xEX (17)

Step 2 (Termination Test ) Is (~~ - xt)T grad f(x
t) equal to zero ?

If yes, stop; the vector x~ is an optimal solution to the quadratic

program (1). Otherwise augment the basis Bt by ~ k to form the new

affine basis B — ~ ~~ ,••,~~ k 1  ,~~k 3

Step 3 (Minor Cycle) Attempt to find a minimizer of f on the manifold M

generated by B. If f possesses a minimizer x on N, go to Step 6.

Otherwise, find its minimizer on N’ where N’ is the manifold through

_ _ _ _ _ _ _ _ _ _ _ _ _
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and parallel to N ~ M
t. The barycentric representation of x’ with

respect to the basis B is x’ — By’ with w~ > 0 and at least one w’1~~ < 0.

Go to Step 7.

Step 6 (In-Pivot) The barycentric representation of the minimizer ~

is x — Sw with > 0. If > 0 for all i, set x~~ — Bt~~ — B

and go to Step 1. Otherwise continue.

Step 7. Intersect the line segment x~x’ or the segment x~ i with the

boundary of S, the simplex generated by B; the intersection point

x
r Bwr will have wr > 0 for all i with wr > 0 and at least one = 0.

k i44

Let s be an index such tha: w 0. Set Br a 3 \ f s 3 and let S~ be

the simplex generated by B

r t+l rStep 8 (Exchange-Pivot) If S is zero-dimensional, set x — x

Bt~ — 8r and to to Step 1. Otherwise continue.

Step 9 (Out-Pivot) Set x~ — ~
r 

, B Br N — ~4
1? 5 — ~

r and go to

step 3.

Theorem 4.1. The Van de Panne-Whinston algorithm stated in Section 3

and Von Hobenbalken algorithm stated above generate the same sequence

of primal feasible vectors in the quadratic program (1).

~~~~~~~~~~~~~~ To prove the theorem, we consider both algorithms entering a major

cycle. By induction on the number of major cycles, we may assume that the

affine basis Bt (in Von Hohenbalken algorithm) is the same as P~ (in

Van de Panne-Whins ton algorithm). The vector x~ is given by
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t * * *x — p — x with x being the feasible vector corresponding to the
1 1

index set 
~~~~~

. Under this identification, it is tamediately clear that

the linear program (17) is precisely the one (13). The termination test

(Step 2) in Von Hohenbalken algorithm is to check if the vector x~ is an

optimal solution to the linear program (17). By using the equation (11)

to obtain the following explicit expression for p~

* *T *p — - (x ) (c + Cx )

it is easy to see that the corresponding step in Van de Panne-Whinston

algorithm is doing precisely the same thing.

After Step 2, the two algorithms start to operate somewhat differently.

To establish the theorem, it suffices to show that at the completion of the

major cycle, both algorithms generate the same affine basis and feasible

vector. To achieve this, we use the next two leninas.

Lenuna 4.2. Suppose that both algorithms enter the minor cycle with the

same basis and extreme point from Step 2. Then an in-pivot occurs in one

algorithm if and only if it occurs in the other. Moreover, the feasible

vectors obtained after such a pivot step are the same.

Proof. Let B — B
r 
U ~

.*k
3 be the affine basis in Von Hohenbalken algorithm

with B
r 

— P being the corresponding basis in Van de Panne-Whinston algorithm.

Notice that ~
k 

—

An in-pivot occurs in the former algorithm if and only if £ has a

minimizer ~ — By on the af fine manifold N generated by B and > 0.

This occurs if and only if the system



— .—_--_.t—--_ ~
- —‘-P-. ~~~~~~~~~~~~~~~~~~ t a ,  —~~~ - ~~~~~~~~—— —
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~~1u ~~~~ 
(c + 

~~~~ ~~~~~~ 
~~~ + 0

~~~ U [t3 - 0

T(e ) w  — l
~1u [t3 ~1U [ t )

has a solution 
~~~~~ 

, 8) with u > 0 . Since the matrix

B(~~ ) (P )T~~~ e

: 1  

1 
~l

- i I T I— 

‘ -e 0 j
\ ~l /

is nonsingular, we may write the latter system as

(v~~~ - + 
(f~~~ W~ (18a)

~~e )  ~~p*)  ~~h )

— L(x*) + p* + ~~ W~ (18b )

f
where (

~ ~i) 
and ( ~i)  are given in (11) and (14) respectively and

~
*

in (16a). (Recall that the matrix Q is vacuous.) Observe that

the system (18) is precisely the relevant portion in the standard tableau

with respect to the basic index set 
~~ 

(cf .  (4)). Since ~ (x*) +

is negative (the algorithm is not terminated yet) it is obvious that the

system (18) has a solution with w 
~ (t3 positive if and only if F

- 
- 

8 < 8 in the ratio test (Step 5 of Van de Panne-Whins ton algorithm) or

equivalently, an in-pivot occurs in the latter algorithm. Moreover, if

such a pivot is in fact performed, it follows that both algorithms

generate the same feasible vector given by 

~~ 
u (t) ~ar1 U [t} - where

is the unique (positive) solution to (18). This proves the levine .



-i 
~

-.---—-

~ 
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Leema 4.3. Suppose that the affine basis Br — P contains more than one

vector. Then the same conclusion in Lenina 4.2 holds for an out-pivot.

Proof. By Leema 4.2 and the fact that an exchange-pivot (in both algorithms)

is performed if and only if an in-pivot is not performed and the current

affine basis B
r 
(i.e., p ) is a singleton , it suffices to verify that

the feasible vectors obtained after an out-pivot is performed are the

same. To prove this, observe that if f does not have a minimizer ~

on the manifold M generated by B — Br U [~~ ) , then Step 3 of the

Von Hohenbalken algorithm attempts to find a minimizer x’ of f on the

manifold M~. It is easy to see that the vector x’ so obtained is given

by p w’ + P where w~ is the solution to (18a) with w — 1.
~l ~l ~ ~l 

t

Consequently , in either case, the vector obtained in Step 7 of

Von Hohenbalken algorithm is given by

— 8~P w + (1 - 8*) P li* + 8* P w for some 0 < 8 * ~ 1t t

The required 8* is chosen to be the largest value of 8 for which wv =

8w + (1 - 8) li* > 0 . It is obviously equal to

9* — win ( -  T1~ I (w~ - lit ) : i 6 
~~ 

, w~ <l1~ 3

From (l8a) it follows that 8* w~ — 91 where ~1 is the minimum ratio

obtained in the ratio test (Step 5) of Van de Panne-Whinston algorithm .

Thus, the vector ~
r 

is equal to

r~~~~ (T~* + f  ~~~ +p~~e
1

~l ~l ~l

which is precisely the one generated by Van de Panne-Whinston algorithm .

This proves the lemma . Q.E.D.

_ _ _ _ _ _ _ _  _ _ _ _  ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ I
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Combining these two lenmias, we obtain the desired conclusion in

Theorem 4.1 readily . Finally , we point out that the two algorithms differ

only in the way each minor cycle is carried out. Basically, they are

the same algorithm.

6. APPENDEC. The example below (due to Professor A. Djang of the Univer-

— sity of Kansas) shows that the Van de Panne-Whinston algorithm applied

to the standard formulation (1) of a quadratic program may not produce the

same sequence of primal feasible vectors as Von Hohenbalken algorithm.

Example. Consider the program

minimize l/2(x2 
+ x~ ) - x1 

- 2x2

subject to 2x1 + 3x2 < 6  , x1 + 4x2 < 5  ; x
1 , x2 > 0

Starting at the origin, the Van de Panne-Whinston algorithm generates

the sequence: (0,0), (0,~) and (
19/15 , 14/~5 ). Starting at the same

point the Von Hohenbalken algorithm generates the sequence: (0,0),

and (19/15 14/15)

- ~~~~~~~~“-~
- -~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-
--
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